STM Studies of the Nanoscale Electronic Landscape of the Cuprates
نویسندگان
چکیده
Scanning tunneling microscopy (STM) studies of the high-T superconductors have led to a number of important discoveries. In particular, STM has revealed spatial patterns in electronic density due to phenomena such as checkerboard order and quasiparticle interference. This thesis presents two studies of these patterns and their implications. In the first, I present a doping and temperature dependent study of checkerboard order in the cuprate superconductor Bi2Sr 2CuO6+x (Bi-2201). The main result, that the wavelength of checkerboard order increases with doping and is independent of temperature, is consistent with a charge density wave origin of the checkerboard and is inconsistent with many other theories. The second study examines local properties of checkerboard order and of quasiparticle interference patterns in Bi-2201 and the related superconductor Bi 2Sr 2 CaCu2Os+x (Bi2212). Both of these phenomena are tied to the doping of the material via the configuration of the Fermi surface. I find local variation in both checkerboard order wavelength and in the quasiparticle interference patterns. These variations are consistent with local variations in Fermi surface properties. The discovery of local variations in Fermi surface provides a new way of thinking about other inhomogeneous properties of the cuprates and of inhomogeneous materials in general. Thesis Supervisor: Eric W. Hudson Title: Associate Professor of Physics ~~~i~'Y--XLY" --rprrurarlDa~i~^-
منابع مشابه
Imaging nanoscale Fermi-surface variations in an inhomogeneous superconductor
Citation Wise, W. D. et al. " Imaging nanoscale Fermi-surface variations in an inhomogeneous superconductor. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Partic...
متن کاملShort range smectic order driving long range nematic order: example of cuprates.
We present a model for describing the combined presence of nematic and 'smectic' or stripe-like orders seen in recent scanning tunneling microscopy (STM) experiments on cuprates. The smectic order is treated as an electronic charge density wave with an associated Peierls distortion or a 'Pomeranchuk wave'. This primary order is restricted to nanoscale domains by disorder effects, while the seco...
متن کاملDopant-modulated pair interaction in cuprate superconductors.
A comparison of recent experimental STM data with single-impurity and many-impurity Bogoliubov-de Gennes calculations strongly suggests that random out-of-plane dopant atoms in cuprates modulate the pair interaction locally. This type of disorder is crucial to understanding the nanoscale electronic inhomogeneity observed in BSCCO-2212, and can reproduce observed correlations between the positio...
متن کاملEffects of Temperature on Radiative Properties of Nanoscale Multilayer with Coherent Formulation in Visible Wavelengths
During the past two decades, there have been tremendous developments in near-field imaging and local probing techniques. Examples are the Scanning Tunneling Microscope (STM), Atomic Force Microscope (AFM), Near-field Scanning Optical Microscope (NSOM), Photon Scanning Tunneling Microscope (PSTM), and Scanning Thermal Microscope (SThM).Results showed that the average reflectance for a dopant con...
متن کاملValence Bond Solid Order Near Impurities in Two-Dimensional Quantum Antiferromagnets
Recent scanning tunnelling microscopy (STM) experiments on underdoped cuprates have displayed modulations in the local electronic density of states which are centered on a Cu-O-Cu bond (Kohsaka et al., Science 315, 1380 (2007)). As a paradigm of the pinning of such bond-centered ordering in strongly correlated systems, we present the theory of valence bond solid (VBS) correlations near a single...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010